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Implementation and Comparison of Bi-Modal Dynamic Branch Prediction 

With Static Branch Prediction schemes 

Abstract  

There's a steady hindrance faced by high-performance processors in pipeline delays that 

are caused by a conditional branch instruction. To resolve the issue, the prediction of 

branches presents significant challenges. This paper aims to present the bi-modal 

prediction algorithm that stresses the role of dynamic branch prediction to boost the 

accuracy rate while mitigating the branch misprediction rate. Further, the paper 

compares the different schemes of static branch prediction with bi-modal dynamic 

branch prediction.  

The results suggest that the bi-modal dynamic branch prediction provides higher 

accuracy than always taken and always not-taken static branch prediction by the rate of 

11.30% and 18.20% respectively. Moreover, the bi-modal dynamic branch prediction 

limits the misprediction rate by 11.33% and 18.16% when respectively compared with 

the always taken and always not-taken static branch prediction.  

Keywords: The Pipeline Processor; A Static and Dynamic Branch Prediction; Accuracy 

Rate; Misprediction rate. 

1. Introduction 
 

 

The advanced processors of this time allow the deep pipeline to improve the flow of instructions 

and speed-up the processor performance [1]. All processors developed since 1985 are using a 

pipeline for the execution of instructions and to improve the processor performances [2]. With the 

superscalar idea of the pipeline execution found in Intel processors [3], which involved various 

parallel execution units, it’s manifold proficient to keep the pipeline full, by executing parallel 

instructions. 

While trying to keep the execution pipeline completely used, the processors in equipment play out 

an enhancement optimization alluded to as speculative execution. With continuous execution, 

when any branch guidance is executing, this processor predicts which branch will be taken. It will 

at that point utilize this conjecture to start, conceivably rashly, executing the directions from the 
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anticipated branch way. At the point when the theory is right, it's alluded to as a Branch expectation 

precision rate hit, and when it's inaccurate, it's alluded to as a branch misprediction rate.  

Pipelining is a usage system utilized in cutting edge chips, where the processor starts executing 

second guidance before the first has been registered. A pipeline is a progression of stages where 

some work is done at each stage. With pipelining, the execution will be done in five stages: Fetch 

(F), Decode (D), Execute (E), Memory (M), and Writeback (W).  

 

1. The fetch stage is reliable for obtaining the requested instruction from the memory.  

 

1. The decode stage takes the output of the fetch stage as input, and it's responsible for 

interpreting the guidance and conveying the different control lines to different pieces of 

the processor. 

 

1. The execution stage considers the output of a decode stage as input, and some ALU 

calculations are performed in this stage. 

  

1.  The memory arrangement is liable for putting away and stacking qualities to and from 

memory.  

 

Nowadays, every CPU processor is implemented with the pipeline to improve their efficiency, but 

a problem occurs when a conditional branch instruction comes in pipeline stages. Several hazards 

or delays cause a problem in the processor to affect the performance of processors- causing them 

to slow-down.  

 

The hazards can be of three types: the data hazard, the structure hazard, and the controlling hazard, 

which is also known as branch hazard. 

 

The advanced processors of this time allow the deep pipeline to improve the flow of 

instructions and speed-up the processor performance [1]. All processors developed 

since 1985 use a pipelineuse pipeline for the execution of instructions and improve the 

processor performances [2]. With the superscalar idea of the execution pipeline found 

in Intel processors [3], which involved various parallel execution units, it’s manifold 

proficient to keep the pipeline full, by executing parallel instructions. 

While trying to keep the execution pipeline completely used, the processors in 

equipment play out an enhancement optimization alluded to as speculative execution. 

With continuouscontinous execution, when any branch guidance is executing, this 

processor predicts which branch will be taken. It will at that point utilize this conjecture 

to start, conceivably rashly, executing the directions from the anticipated branch way. 
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At the point when the theory is right, it's alluded to as a Branch expectation precision 

rate hit, and when it's inaccurate, it's alluded to as a branch misprediction rate.  

Pipelining is a usage system utilized in cutting edge chipschip, where the processor 

starts executing a second guidance before the first has been registered. A pipeline is a 

progression of stages where some work is done at each stage. With pipelining, the 

execution will be done in five stages: Fetch (F), Decode (D), Execute (E), Memory 

(M) and Write back (W).  

 

1) The fetch stage is reliable for obtaining the requested instruction from the memory.  

 

2) The decode stage takes the output of the fetch stage as input, and it's responsible for 

interpreting the guidance and conveying the different control linesline to different 

pieces of the processor. 

 

3) The execution stage considers the output of a decode stage as input, and some ALU 

calculations are performed in this stage. 

  

4)  The memory arrangementarrange is liable for putting away and stacking qualities to 

and from memory.  

 

Nowadays, every CPU processor is implemented with the pipeline to improve their 

efficiency, but a problem occurs when a conditional branch instruction comes in 

pipeline stages. Several hazards or delays cause a problem in the processor to affect the 

performance of processors- causing them to slow-down.  

 

The hazards can be of three types: the data hazard, the structure hazard, and the 

control hazard, which is also known as branch hazard. 

 

 

 

 

 

1.1 Data Hazard 

 

Also, knownknows as a pipeline data hazard, this hazard arises from the dependence of 

instruction on earlier instructions or data that is running in the queue or pipeline because 

data that is needed to execute the instructions areis not yet accessible [4]. 

 

1.2 Structure Hazard 
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This hazard arises when an instruction can’t be executed in the best possible clock cycle 

because, at times, the hardware does not support multiple combinations of instructions 

that need to be executed [5]. 

 

1.3 Control Hazard 

  

A branch in a sequence of instructions causes a problem. However, until the branch is 

resolved, the processor will not know from where to fetch the next instructions, and this 

causes a problem [5]. This situation gives rise to a control hazard [2,4].   

Accurate branch prediction is essential to sustain an efficient pipeline, which is critical 

forto boosting the performance of modern processors. Branch prediction is essential in 

modern processors to mitigate the branch delay problems. Dedicated hardware is 

provided in advanced processors to correctly predict the direction, as well as the 

outcome of conditional branches.  

If the branch direction is correctly predicted then the processor executes the continuous 

flow of instruction, and in case of not correctly predicted- the processor leads to flushing 

of the pipelines. Therefore, it's critical to predictpredicting the branch correctly. The 

branch prediction method falls into two categories of prediction:  

  

A) Static branch prediction  

B) Dynamic branch prediction. 

 
 

  

⮚ Static branch prediction: This method is usually carried out by the compiler.  

This prediction is entitled static for the reason that the prediction is known before the 

execution of the program.  

  

Some of the static branch prediction includes: 

  

● Predict all branches that are taken. 

● Predicting all branches that are not-taken. 

● Predict backward taken and forward not-taken. 

● Prediction based on profiling. 

  

⮚ Dynamic branch prediction: This method makes the decisions on the last 

executions of a program and has been more accurate than the static branch schemes.  
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Some of the dynamic branch prediction includes: 

  

● One level or bimodal dynamic branch prediction scheme. 

● The two-level adaptive prediction scheme. 

● Correlated prediction scheme. 

● Hybrid based prediction scheme. 

● Neural branch predictor scheme. 

  

Nevertheless, there have been a handful specialized development techniques that have 

upgraded the execution of pipeline processors [7]. However, Branch prediction is a 

method by which the performance of the pipeline processors can be increased [8]. 

Hence, to overcome their overheads, accurate prediction of the branch outcome is vital 

[9]. 

  

Contributions:  

  

The current paper is the extension in continuation of our previous work [10], wherein 

we employed implied the static branch prediction schemes by using alpha benchmarks 

files. The performance of schemes was taken in terms of conditional branches, 

unconditional branches, branch address accuracy rate, and branch address misprediction 

rate. In this paper, we target at a dynamic branch prediction scheme that gives enhanced 

accuracy as compared to the static branch prediction schemes. The paper is structured 

in the following style: 

  

Section1 introduces the role of branch prediction. Section 2 presents a concise 

background of dynamic branch prediction schemes. The role of dynamic branch 

prediction is discussed in Section 3. Section 4 outlines the experimental framework of 

different benchmarks files using the bi-modal dynamic branch prediction, the 

simulation results are presented in Section 5, and in Section 6, the paper concludes with 

a comment on the scope of future work. 

 

 

  

2. Related work 

 
Branch prediction performance issue has been studied extensively in the literature; 

therefore, this section focuses on the different schemes that are used for the branch 

prediction. A large amount of speculative work has been carried out to increase the 
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performance of processors by using several structures. Few of them from the deepfrom 

deep past were based on static predictions while others were dynamic in nature i.e. 

predictors that change its behavior in run-time.  

  

J.E.Smith [2] introduces the comparative study of branch prediction strategies. He 

briefly discussed the seven hardware different strategies of branch prediction to improve 

the performance of processorsprocessor including static, dynamic and improved 

dynamic strategies. 

  

Lee and A.J.Smith [11] evaluate the branch target buffer with many prediction 

schemes. The Branch target buffer is a small associative memory that contains the 

addresses of the most recent branches and their target locations.  

  

The 2-level adaptive schemes were introduced by Yeh and Putt [12], [13] wherein two 

types of tables were talked about.  

  

Pan et.al [14] proposed a correlation-basedproposed correlation-based predictor that 

additionally uses the behavior of other branches to make a prediction.  

  

Sweety and P. Chaudhary [8] introduced a brief review of the branch prediction and 

discussed the schemes of branch prediction which they categorized into 2 schemes, viz. 

Static branch prediction schemes and Dynamic branch prediction schemes.  

The static branch prediction scheme only predicted whether all the branches are taken 

or not-taken.  

  

In another paper, Sweety and P. Chaudhary [10] implemented the static branch 

prediction scheme by using some benchmarksbenchmarks file. The result concludes that 

the Always Taken Scheme provides a better result when compared to Always Not-taken 

Scheme.  

  

The dynamic branch prediction scheme was firstly reported by Lee and Smith [11] and 

provides 68% accuracy in the prediction of branches.  

  

However, according to the McFarling [15] dynamic branch prediction schemes 

provideprovides at least 90% accuracy in the prediction of branches. Nevertheless, as 

compared to the static schemes, a dynamic scheme has been studied extensively and 

gives better accuracy than static schemes.  
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In the dynamic branch prediction, firstly a two-bitfirstly two-bit dynamic branch 

predictor was introduced by Hennessy and Patterson [16].  

  

To overcome the limitations of a two-bit dynamic branch predictor and tofor achieve 

improved accuracy of branch prediction, Su and Zhou [17] provided special aspects  to 

analyzeanalysis the performance. 

 

Table 1: Different types of Dynamic branch predictor with their features and challenges: 

 

Branch 

Predictors 

Features and challenges Reference 

Smith 

Algorithm's 

Improve the performance by a small increment, 

but it doesn't use the store history tables of 

instructions. 

[2, 10] 

Two-level 

predictor 

Uses two separate levels of branch history tables. 

However, However, trade-off between sizes of 

two-tables occurs. 

[11,18-20] 

Index sharing 

predictor 

Size of the historyof history table is large as 

compared to the two-level predictors. Hashing 

branch history register and PC together leads to 

better accuracy in processor performance. 

[21–23] 

Agree Predictor Reduces destructive aliasing interference by 

reinterpreting the pattern history table counter. 

[25, 26] 

Hybrid branch 

predictor 

Combines two or more predictors to make one 

final prediction, but sometimessometime 

partially misunderstandsmisunderstand the 

hybrid path at the time of prediction. 

[24, 25] 

Path based 

neural branch 

predictor 

Uses ahead pipelining to balance idleness 
issuesissue, be that as it may, it replaces more force 
and region effective convey spare adders of unique 
perceptron branch indicator with a few convey 
finishing adders, prompting higher multifaceted 
nature.  

[19, 24,26] 

PiecewisePiece-

wise linear 

neural branch 

predictor 

Gives much higher precision, however 
fundamentally builds the check pointing and 
recuperation overhead and the quantity of adders. 

[27, 28] 
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3. The Dynamic branch prediction 
  

The fact is well-established that in pipeline architecture processors, conditional 

instructions break continues the flow of instruction during the execution of instructions. 

This break results in a form of delay which creates a decrease in the processor 

performance.  

To overcome this delay and improve the performance of the processor, one can attempt 

to guess the directions of the conditional instructions.  

  

Hence, branch prediction improves the performance of a pipelineof pipeline by 

providing a correctlycorrect predicted path for the instructions after a conditional branch 

has been encountered.  

  

In other words, branch prediction is the ability to make an educated guess about the way 

a branch will go; will the branch be taken or not. If the mispredicted path occurs, the 

pipeline gets flushed and again that path is predicted until the conditional branch address 

is matched [33]. 
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Fig.1. Flow chart of executing instruction using dynamic behaviour in the pipeline 

Dynamic branch predictors choose the instructions dynamically to execute the next, 

possibly reordering sequences of the instructions to avoid the stalls or control hazard. 

The performance of the predictors depends on the accuracy as well as onas the on the 

misprediction rate of instructions. 

 

Performance = f (accuracy rate, misprediction rate) 

 

● The accuracy rate is defined as the prediction path that is correct for the 

conditional branches. 

● The misprediction rate is defined as the prediction path that is not correct for the 

conditional branches. 

 

In Dynamic prediction, the prediction of branches depends on the recent execution 

history of each branch and that history is stored in the Branch History Table (BHT) [34]. 

But, if the prediction of branches goes wrong, the pipeline gets stalledstall while re-

fetching the instructions, and simultaneously the branchsimultaneously branch history 

table gets updated. This prediction maintains a history table that stores information 

about the executed instructions [18]. The BTB (Branch Target Buffer) is illustrated in 

Fig. 2. to detect the presence of a branch instruction in the progression of got directions 

before it has been decoded. It also provides the branch target address when the branch 

is anticipated as taken. The BTB is listed by lower bits of the program counter and every 

section is labelled with the branch address for check. 

3.1 Bi-modal Dynamic Branch Prediction Scheme 

 

 The Bi-modal predictor scheme tracks the individual behavior of branches.This 

prediction provides a counter for each entry when any conditional instruction occurs 

[35]. The value of the counter lies between 0 and 3. The two-bit values represent viz.; 

00, 01, 10, 11 [11]. The following values and their prediction selection are represented 

in Table 2.  

Table 2. Representation of states of counter values and their prediction selection 

 

Counter values Prediction Selection 

00 strongly not-taken 

01 weakly not-taken  

10 weakly taken 

11 strongly taken 
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The bimodal branch prediction scheme is similar to the theory of finite state machines. 

In this, the counter is incremented or decremented according to whether theto the branch 

is taken or not taken. In fig inside the circle is the prediction whether it will be taken or 

not taken state and outside label is what is the actualis actual prediction state. 

 

The finite states of the bimodal branch prediction scheme are represented in Fig. 2 

 
 
 

 

 

  
Taken Not-taken 

 
 Taken 

  

 
  Not-taken 

 Not-taken  

  
                                                           Taken 

 

Fig. 2: The finite states in bi-modal branch prediction scheme 

                             

The above diagram explanation is followed by the table below: 

 

History 

Bits 

Resultin

g 

Descripti

on 

Prediction 

Made 

If branch  

taken 

If not Taken 

11 Strongly 

Taken 

Branch 

Taken 

Remains in same 

state 

Decreased to 

weakly taken 

10 Weakly 

Taken 

Branch 

Taken 

Upgraded to 

strongly taken 

Decreased to 

weakly not-

taken 

01 Weakly 

not taken  

Branch not 

taken 

Upgraded to 

weakly taken 

Decreased to 

strongly not-

taken 

Strongly  

Taken  
           11 
 

Weakly Taken  
           10 
 

Strongly not  

Taken 
           00 
 

Weakly not  

Taken 
          01 
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00 Strongly 

not-

taken 

Branch not-

taken 

Upgraded to 

weakly not-

taken 

Remains in 

same state 

 

4. Experimental Framework 
 

This section describes the simulation experiment, benchmarks, and statistics of different 

benchmarks files using the bi-modal dynamic branch prediction. 

 

 

4.1. Simulation Experiment  

 

The simulation of the proposed work of the bi-modal dynamic scheme is done using the 

modified version of SimpleScalarSimple Scalar toolset simulator 3.0, which is 

developed at the University of Wisconsin in Madison.  

 

The toolset of this simulator includes performance visualization tools, statistical 

analysis resources, debug, and verification infrastructure. Fig.3. outlines the 

configuration of the simulator for dynamic branch prediction. 

 

4.2 Benchmarks 

Now the paper of study is directed through a uniquethrough unique dynamic simulation 

driven by utilizing the SPEC alpha benchmarks which consists of five different 

benchmark programs: tests-args, test-dirent, test-fmath, test-long, and test-lawler.  

  

At the point when  any benchmarkbenchmarks runs on the tool, the subsequent yield 

gives the complete number of directions, numerous branches executed, and the quantity 

of branches whose address is hit and miss. 

  

Table.3 represents SPEC alpha benchmarks files and the input used, the total number of 

instructions executed, the number of loads and store instructions, the total number of 

conditional and unconditional branch instructions, and the total number of instructions 

per branch. 
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Table 3. SPEC alpha benchmarks information 

 

Benc

hmar

k 

Input file Total 

number of 

instructio

ns 

Total 

number of 

load and 

store 

instruction

s 

Total 

number of 

conditional 

branch 

instructions 

Total number  

of 

unconditional 

instructions 

Total 

number of  

instruction

s per 

branch 

anagr

am 

test-

anagram.i

n 

4904 1825 870 683 5.6368 

args Test-

args.in 

6447 2252 1211 1041 5.3237 

dirent tes-

dirent.in 

4498 1738 799 939 5.6295 

llong test-

llong.in 

10572 3425 1876 1549 5.6354 

lslwr Test-

lslwr.in 

4871 1867 863 1004 5.6443 

 

 

4.3 Benchmark Statistics 

 

Conditional branch instructions dramatically affect the performance of a pipeline and 

each branch behaves differently with different applications. It is important to generalize 

the performance of a pipeline by predicting the direction of branches by using any 

predictor with some benchmark files. 

In our previous work, we had implemented static branch prediction schemes using 

always taken and always not-taken prediction schemes. 

 

 In the current paper, SPEC-alpha benchmarks files are run on the Simple-scalar tool by 

using a bi-modal dynamic branch predictionpredictor scheme. To calculate the 

performance of a bi-modal dynamic branch prediction scheme, each benchmark filefiles 

runsrun on the Simple-scalar tool to get the branch accuracy rate,= and branch 

misprediction rate.  
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5. Simulation Results 
 

This section describes the performance accuracy of the branch address hit rate and 

branch misprediction rate of the bi-modal dynamic branch prediction scheme, and 

comparison of the static branch prediction scheme, as already implemented in our 

previous papers.  

 

5.1 Performance impact of benchmark files 

 

Fig. 4. shows the performance analysis for five SPEC-alpha benchmarks. Taking the 

reference from the figure above, it can be identified that each benchmarkbenchmarks 

filefiles hashave a different number of branch executed instructions. Each 

benchmarkbenchmarks filefiles providesprovide a different rate for branch address hits 

as well as for the branch misprediction rate. To determine the accuracy rate as well as 

the misprediction rate of branch instructions, simulations were carried out on a modified 

version of SimpleScalarSimple Scalar 3.0 simulator.  

 

 
 

Fig. 4: Performance impact of each benchmark files: total number of branch executed 

instructions, branch address hit, and branch misprediction rate. 

 

5.2 Performance impact of branch prediction accuracy 

The impact of the branch prediction accuracy rate is identified when a predicted 

direction of a branch is equal to the actual direction of that branch.  
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Table 4 indicates the branch prediction address hit rate accuracy for each benchmarks 

file.  

This table provides a comparison of the static scheme namely, the always-taken 

prediction scheme and always not-taken prediction scheme with a bi-modal dynamic 

branch prediction scheme. Evidently, it refers tothat the accuracy rate of address hit 

inhit is higher in the bi-modal dynamic branch prediction scheme.  

 

The current paperwork implements a bi-modal dynamic branch prediction scheme by 

analyzing the same benchmarks file and the result of the branch accuracy rates are better 

than the previous schemes. 

 

Table 4: Comparison of branch prediction address hit rate 

  

Branch 

Prediction 

schemes 

SPEC-alpha Benchmarks Files Tota

l 

Acc

urac

y 

Anagra

m 

args Dirent llo

ng 

Lsl

wr 

Always-

taken 

prediction 

scheme 

75.75% 70.08

% 

75.31

% 

62.

66

% 

63.4

0% 

69.4

4% 

Always not-

taken 

prediction 

scheme 

6.40% 63.55

% 

59.14

% 

61.

29

% 

62.3

3% 

62.5

4% 

Bi-modal 

prediction 

scheme 

78.50% 82.41

% 

78.84

% 

85.

50

% 

78.4

7% 

80.7

4% 
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Fig.5: Performance accuracy of branch address accuracy rate of different schemes of 

the prediction scheme. 

 

As evident in fig.5. the bi-modal prediction scheme shows higher accuracy as compared 

to the other schemes. As a matter of fact, the accuracy rate is different in each 

benchmark file in the corresponding scheme. The average accuracy rate of bi-modal 

prediction is 11.30% higher than always taken prediction scheme, and 18.20 % higher 

than always not-taken prediction scheme. 

 

  5.2 Performance impact of branch misprediction rate: 

 

The impact of branch misprediction rate is observed when a predicted direction of a 

branch is not equal to the actual direction of that branch.  

 

Table 5 reflects the branch misprediction rate for each benchmarks file. This table 

suggests the comparison of the static schemes such as always-taken prediction scheme 

and always not-taken prediction scheme with bi-modal dynamic branch prediction 

scheme. Visibly, it shows that the misprediction rate is lowest in the bi-modal dynamic 

branch prediction scheme. The results of always taken prediction schemes and always 

not-taken prediction schemes were implemented in our previous work. In this paper, we 

implemented the bi-modal dynamic branch prediction scheme by using the same 

benchmarks file and the result of the branch misprediction rate is better than the 

previous schemes. 

 

Fig. 5 reflects that the bi-modal prediction scheme provides the lowest misprediction 

rate when compared to the other schemes. Furthermore, the misprediction rate is 
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different in each benchmark file in every scheme. The average misprediction rate of bi-

modal prediction is 11.30% lower than always taken prediction scheme, and 18.18 % 

lower than always not-taken prediction scheme. 

6. Conclusion and Future Scope 

In the current constructed paper, a bi-modal dynamic branch prediction scheme is 

implemented that has a lower misprediction rate and higher accuracy rate than the static 

prediction schemes. Leveraging the benchmarks files, the accuracy rate of bi-modal 

prediction is 11.30% higher than always taken prediction scheme, and 18.20 % higher 

than always not-taken prediction scheme. 

On the other hand, the misprediction rate is 11.30% lower than always taken prediction 

schemesscheme, and 18.18 % than always not-taken prediction schemesscheme. These 

results satisfactory suggest that the dynamic branch prediction scheme provides 

improved results than static branch prediction schemes. 

The branch prediction accuracy can be optimized by combining static with dynamic 

branch prediction. Some of the branches can be predicted with a static bias bit, while 

the others having less biased behavior can use the dynamic predictor. Machine learning 

also mechanizes a genetic algorithm or neural network to improve the accuracy rate of 

the branch predictor.  
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