

branch_predicti

on

Implementation and Comparison of Bi-Modal Dynamic Branch Prediction

With Static Branch Prediction schemes

Abstract

There's a steady hindrance faced by high-performance processors in pipeline delays that

are caused by a conditional branch instruction. To resolve the issue, the prediction of

branches presents significant challenges. This paper aims to present the bi-modal

prediction algorithm that stresses the role of dynamic branch prediction to boost the

accuracy rate while mitigating the branch misprediction rate. Further, the paper

compares the different schemes of static branch prediction with bi-modal dynamic

branch prediction.

The results suggest that the bi-modal dynamic branch prediction provides higher

accuracy than always taken and always not-taken static branch prediction by the rate of

11.30% and 18.20% respectively. Moreover, the bi-modal dynamic branch prediction

limits the misprediction rate by 11.33% and 18.16% when respectively compared with

the always taken and always not-taken static branch prediction.

Keywords: The Pipeline Processor; A Static and Dynamic Branch Prediction; Accuracy

Rate; Misprediction rate.

1. Introduction

The advanced processors of this time allow the deep pipeline to improve the flow of instructions

and speed-up the processor performance [1]. All processors developed since 1985 are using a

pipeline for the execution of instructions and to improve the processor performances [2]. With the

superscalar idea of the pipeline execution found in Intel processors [3], which involved various

parallel execution units, it’s manifold proficient to keep the pipeline full, by executing parallel

instructions.

While trying to keep the execution pipeline completely used, the processors in equipment play out

an enhancement optimization alluded to as speculative execution. With continuous execution,

when any branch guidance is executing, this processor predicts which branch will be taken. It will

at that point utilize this conjecture to start, conceivably rashly, executing the directions from the

Formatted: Indent: First line: 0 cm

2

branch_predicti

on

anticipated branch way. At the point when the theory is right, it's alluded to as a Branch expectation

precision rate hit, and when it's inaccurate, it's alluded to as a branch misprediction rate.

Pipelining is a usage system utilized in cutting edge chips, where the processor starts executing

second guidance before the first has been registered. A pipeline is a progression of stages where

some work is done at each stage. With pipelining, the execution will be done in five stages: Fetch

(F), Decode (D), Execute (E), Memory (M), and Writeback (W).

1. The fetch stage is reliable for obtaining the requested instruction from the memory.

1. The decode stage takes the output of the fetch stage as input, and it's responsible for

interpreting the guidance and conveying the different control lines to different pieces of

the processor.

1. The execution stage considers the output of a decode stage as input, and some ALU

calculations are performed in this stage.

1. The memory arrangement is liable for putting away and stacking qualities to and from

memory.

Nowadays, every CPU processor is implemented with the pipeline to improve their efficiency, but

a problem occurs when a conditional branch instruction comes in pipeline stages. Several hazards

or delays cause a problem in the processor to affect the performance of processors- causing them

to slow-down.

The hazards can be of three types: the data hazard, the structure hazard, and the controlling hazard,

which is also known as branch hazard.

The advanced processors of this time allow the deep pipeline to improve the flow of

instructions and speed-up the processor performance [1]. All processors developed

since 1985 use a pipelineuse pipeline for the execution of instructions and improve the

processor performances [2]. With the superscalar idea of the execution pipeline found

in Intel processors [3], which involved various parallel execution units, it’s manifold

proficient to keep the pipeline full, by executing parallel instructions.

While trying to keep the execution pipeline completely used, the processors in

equipment play out an enhancement optimization alluded to as speculative execution.

With continuouscontinous execution, when any branch guidance is executing, this

processor predicts which branch will be taken. It will at that point utilize this conjecture

to start, conceivably rashly, executing the directions from the anticipated branch way.

branch_predicti

on

At the point when the theory is right, it's alluded to as a Branch expectation precision

rate hit, and when it's inaccurate, it's alluded to as a branch misprediction rate.

Pipelining is a usage system utilized in cutting edge chipschip, where the processor

starts executing a second guidance before the first has been registered. A pipeline is a

progression of stages where some work is done at each stage. With pipelining, the

execution will be done in five stages: Fetch (F), Decode (D), Execute (E), Memory

(M) and Write back (W).

1) The fetch stage is reliable for obtaining the requested instruction from the memory.

2) The decode stage takes the output of the fetch stage as input, and it's responsible for

interpreting the guidance and conveying the different control linesline to different

pieces of the processor.

3) The execution stage considers the output of a decode stage as input, and some ALU

calculations are performed in this stage.

4) The memory arrangementarrange is liable for putting away and stacking qualities to

and from memory.

Nowadays, every CPU processor is implemented with the pipeline to improve their

efficiency, but a problem occurs when a conditional branch instruction comes in

pipeline stages. Several hazards or delays cause a problem in the processor to affect the

performance of processors- causing them to slow-down.

The hazards can be of three types: the data hazard, the structure hazard, and the

control hazard, which is also known as branch hazard.

1.1 Data Hazard

Also, knownknows as a pipeline data hazard, this hazard arises from the dependence of

instruction on earlier instructions or data that is running in the queue or pipeline because

data that is needed to execute the instructions areis not yet accessible [4].

1.2 Structure Hazard

Formatted: Indent: Left: 0 cm

4

branch_predicti

on

This hazard arises when an instruction can’t be executed in the best possible clock cycle

because, at times, the hardware does not support multiple combinations of instructions

that need to be executed [5].

1.3 Control Hazard

A branch in a sequence of instructions causes a problem. However, until the branch is

resolved, the processor will not know from where to fetch the next instructions, and this

causes a problem [5]. This situation gives rise to a control hazard [2,4].

Accurate branch prediction is essential to sustain an efficient pipeline, which is critical

forto boosting the performance of modern processors. Branch prediction is essential in

modern processors to mitigate the branch delay problems. Dedicated hardware is

provided in advanced processors to correctly predict the direction, as well as the

outcome of conditional branches.

If the branch direction is correctly predicted then the processor executes the continuous

flow of instruction, and in case of not correctly predicted- the processor leads to flushing

of the pipelines. Therefore, it's critical to predictpredicting the branch correctly. The

branch prediction method falls into two categories of prediction:

A) Static branch prediction

B) Dynamic branch prediction.

⮚ Static branch prediction: This method is usually carried out by the compiler.

This prediction is entitled static for the reason that the prediction is known before the

execution of the program.

Some of the static branch prediction includes:

● Predict all branches that are taken.

● Predicting all branches that are not-taken.

● Predict backward taken and forward not-taken.

● Prediction based on profiling.

⮚ Dynamic branch prediction: This method makes the decisions on the last

executions of a program and has been more accurate than the static branch schemes.

Formatted: Font: Italic

Formatted: Font: Italic

branch_predicti

on

Some of the dynamic branch prediction includes:

● One level or bimodal dynamic branch prediction scheme.

● The two-level adaptive prediction scheme.

● Correlated prediction scheme.

● Hybrid based prediction scheme.

● Neural branch predictor scheme.

Nevertheless, there have been a handful specialized development techniques that have

upgraded the execution of pipeline processors [7]. However, Branch prediction is a

method by which the performance of the pipeline processors can be increased [8].

Hence, to overcome their overheads, accurate prediction of the branch outcome is vital

[9].

Contributions:

The current paper is the extension in continuation of our previous work [10], wherein

we employed implied the static branch prediction schemes by using alpha benchmarks

files. The performance of schemes was taken in terms of conditional branches,

unconditional branches, branch address accuracy rate, and branch address misprediction

rate. In this paper, we target at a dynamic branch prediction scheme that gives enhanced

accuracy as compared to the static branch prediction schemes. The paper is structured

in the following style:

Section1 introduces the role of branch prediction. Section 2 presents a concise

background of dynamic branch prediction schemes. The role of dynamic branch

prediction is discussed in Section 3. Section 4 outlines the experimental framework of

different benchmarks files using the bi-modal dynamic branch prediction, the

simulation results are presented in Section 5, and in Section 6, the paper concludes with

a comment on the scope of future work.

2. Related work

Branch prediction performance issue has been studied extensively in the literature;

therefore, this section focuses on the different schemes that are used for the branch

prediction. A large amount of speculative work has been carried out to increase the

6

branch_predicti

on

performance of processors by using several structures. Few of them from the deepfrom

deep past were based on static predictions while others were dynamic in nature i.e.

predictors that change its behavior in run-time.

J.E.Smith [2] introduces the comparative study of branch prediction strategies. He

briefly discussed the seven hardware different strategies of branch prediction to improve

the performance of processorsprocessor including static, dynamic and improved

dynamic strategies.

Lee and A.J.Smith [11] evaluate the branch target buffer with many prediction

schemes. The Branch target buffer is a small associative memory that contains the

addresses of the most recent branches and their target locations.

The 2-level adaptive schemes were introduced by Yeh and Putt [12], [13] wherein two

types of tables were talked about.

Pan et.al [14] proposed a correlation-basedproposed correlation-based predictor that

additionally uses the behavior of other branches to make a prediction.

Sweety and P. Chaudhary [8] introduced a brief review of the branch prediction and

discussed the schemes of branch prediction which they categorized into 2 schemes, viz.

Static branch prediction schemes and Dynamic branch prediction schemes.

The static branch prediction scheme only predicted whether all the branches are taken

or not-taken.

In another paper, Sweety and P. Chaudhary [10] implemented the static branch

prediction scheme by using some benchmarksbenchmarks file. The result concludes that

the Always Taken Scheme provides a better result when compared to Always Not-taken

Scheme.

The dynamic branch prediction scheme was firstly reported by Lee and Smith [11] and

provides 68% accuracy in the prediction of branches.

However, according to the McFarling [15] dynamic branch prediction schemes

provideprovides at least 90% accuracy in the prediction of branches. Nevertheless, as

compared to the static schemes, a dynamic scheme has been studied extensively and

gives better accuracy than static schemes.

branch_predicti

on

In the dynamic branch prediction, firstly a two-bitfirstly two-bit dynamic branch

predictor was introduced by Hennessy and Patterson [16].

To overcome the limitations of a two-bit dynamic branch predictor and tofor achieve

improved accuracy of branch prediction, Su and Zhou [17] provided special aspects to

analyzeanalysis the performance.

Table 1: Different types of Dynamic branch predictor with their features and challenges:

Branch

Predictors

Features and challenges Reference

Smith

Algorithm's

Improve the performance by a small increment,

but it doesn't use the store history tables of

instructions.

[2, 10]

Two-level

predictor

Uses two separate levels of branch history tables.

However, However, trade-off between sizes of

two-tables occurs.

[11,18-20]

Index sharing

predictor

Size of the historyof history table is large as

compared to the two-level predictors. Hashing

branch history register and PC together leads to

better accuracy in processor performance.

[21–23]

Agree Predictor Reduces destructive aliasing interference by

reinterpreting the pattern history table counter.

[25, 26]

Hybrid branch

predictor

Combines two or more predictors to make one

final prediction, but sometimessometime

partially misunderstandsmisunderstand the

hybrid path at the time of prediction.

[24, 25]

Path based

neural branch

predictor

Uses ahead pipelining to balance idleness
issuesissue, be that as it may, it replaces more force
and region effective convey spare adders of unique
perceptron branch indicator with a few convey
finishing adders, prompting higher multifaceted
nature.

[19, 24,26]

PiecewisePiece-

wise linear

neural branch

predictor

Gives much higher precision, however
fundamentally builds the check pointing and
recuperation overhead and the quantity of adders.

[27, 28]

8

branch_predicti

on

3. The Dynamic branch prediction

The fact is well-established that in pipeline architecture processors, conditional

instructions break continues the flow of instruction during the execution of instructions.

This break results in a form of delay which creates a decrease in the processor

performance.

To overcome this delay and improve the performance of the processor, one can attempt

to guess the directions of the conditional instructions.

Hence, branch prediction improves the performance of a pipelineof pipeline by

providing a correctlycorrect predicted path for the instructions after a conditional branch

has been encountered.

In other words, branch prediction is the ability to make an educated guess about the way

a branch will go; will the branch be taken or not. If the mispredicted path occurs, the

pipeline gets flushed and again that path is predicted until the conditional branch address

is matched [33].

branch_predicti

on

Fig.1. Flow chart of executing instruction using dynamic behaviour in the pipeline

Dynamic branch predictors choose the instructions dynamically to execute the next,

possibly reordering sequences of the instructions to avoid the stalls or control hazard.

The performance of the predictors depends on the accuracy as well as onas the on the

misprediction rate of instructions.

Performance = f (accuracy rate, misprediction rate)

● The accuracy rate is defined as the prediction path that is correct for the

conditional branches.

● The misprediction rate is defined as the prediction path that is not correct for the

conditional branches.

In Dynamic prediction, the prediction of branches depends on the recent execution

history of each branch and that history is stored in the Branch History Table (BHT) [34].

But, if the prediction of branches goes wrong, the pipeline gets stalledstall while re-

fetching the instructions, and simultaneously the branchsimultaneously branch history

table gets updated. This prediction maintains a history table that stores information

about the executed instructions [18]. The BTB (Branch Target Buffer) is illustrated in

Fig. 2. to detect the presence of a branch instruction in the progression of got directions

before it has been decoded. It also provides the branch target address when the branch

is anticipated as taken. The BTB is listed by lower bits of the program counter and every

section is labelled with the branch address for check.

3.1 Bi-modal Dynamic Branch Prediction Scheme

 The Bi-modal predictor scheme tracks the individual behavior of branches.This

prediction provides a counter for each entry when any conditional instruction occurs

[35]. The value of the counter lies between 0 and 3. The two-bit values represent viz.;

00, 01, 10, 11 [11]. The following values and their prediction selection are represented

in Table 2.

Table 2. Representation of states of counter values and their prediction selection

Counter values Prediction Selection

00 strongly not-taken

01 weakly not-taken

10 weakly taken

11 strongly taken

10

branch_predicti

on

The bimodal branch prediction scheme is similar to the theory of finite state machines.

In this, the counter is incremented or decremented according to whether theto the branch

is taken or not taken. In fig inside the circle is the prediction whether it will be taken or

not taken state and outside label is what is the actualis actual prediction state.

The finite states of the bimodal branch prediction scheme are represented in Fig. 2

Taken Not-taken

 Taken

 Not-taken

 Not-taken

 Taken

Fig. 2: The finite states in bi-modal branch prediction scheme

The above diagram explanation is followed by the table below:

History

Bits

Resultin

g

Descripti

on

Prediction

Made

If branch

taken

If not Taken

11 Strongly

Taken

Branch

Taken

Remains in same

state

Decreased to

weakly taken

10 Weakly

Taken

Branch

Taken

Upgraded to

strongly taken

Decreased to

weakly not-

taken

01 Weakly

not taken

Branch not

taken

Upgraded to

weakly taken

Decreased to

strongly not-

taken

Strongly

Taken
 11

Weakly Taken
 10

Strongly not

Taken
 00

Weakly not

Taken
 01

Formatted: Indent: Left: 0 cm, First line: 0 cm

Formatted: Font color: Auto

branch_predicti

on

00 Strongly

not-

taken

Branch not-

taken

Upgraded to

weakly not-

taken

Remains in

same state

4. Experimental Framework

This section describes the simulation experiment, benchmarks, and statistics of different

benchmarks files using the bi-modal dynamic branch prediction.

4.1. Simulation Experiment

The simulation of the proposed work of the bi-modal dynamic scheme is done using the

modified version of SimpleScalarSimple Scalar toolset simulator 3.0, which is

developed at the University of Wisconsin in Madison.

The toolset of this simulator includes performance visualization tools, statistical

analysis resources, debug, and verification infrastructure. Fig.3. outlines the

configuration of the simulator for dynamic branch prediction.

4.2 Benchmarks

Now the paper of study is directed through a uniquethrough unique dynamic simulation

driven by utilizing the SPEC alpha benchmarks which consists of five different

benchmark programs: tests-args, test-dirent, test-fmath, test-long, and test-lawler.

At the point when any benchmarkbenchmarks runs on the tool, the subsequent yield

gives the complete number of directions, numerous branches executed, and the quantity

of branches whose address is hit and miss.

Table.3 represents SPEC alpha benchmarks files and the input used, the total number of

instructions executed, the number of loads and store instructions, the total number of

conditional and unconditional branch instructions, and the total number of instructions

per branch.

12

branch_predicti

on

Table 3. SPEC alpha benchmarks information

Benc

hmar

k

Input file Total

number of

instructio

ns

Total

number of

load and

store

instruction

s

Total

number of

conditional

branch

instructions

Total number

of

unconditional

instructions

Total

number of

instruction

s per

branch

anagr

am

test-

anagram.i

n

4904 1825 870 683 5.6368

args Test-

args.in

6447 2252 1211 1041 5.3237

dirent tes-

dirent.in

4498 1738 799 939 5.6295

llong test-

llong.in

10572 3425 1876 1549 5.6354

lslwr Test-

lslwr.in

4871 1867 863 1004 5.6443

4.3 Benchmark Statistics

Conditional branch instructions dramatically affect the performance of a pipeline and

each branch behaves differently with different applications. It is important to generalize

the performance of a pipeline by predicting the direction of branches by using any

predictor with some benchmark files.

In our previous work, we had implemented static branch prediction schemes using

always taken and always not-taken prediction schemes.

 In the current paper, SPEC-alpha benchmarks files are run on the Simple-scalar tool by

using a bi-modal dynamic branch predictionpredictor scheme. To calculate the

performance of a bi-modal dynamic branch prediction scheme, each benchmark filefiles

runsrun on the Simple-scalar tool to get the branch accuracy rate,= and branch

misprediction rate.

branch_predicti

on

5. Simulation Results

This section describes the performance accuracy of the branch address hit rate and

branch misprediction rate of the bi-modal dynamic branch prediction scheme, and

comparison of the static branch prediction scheme, as already implemented in our

previous papers.

5.1 Performance impact of benchmark files

Fig. 4. shows the performance analysis for five SPEC-alpha benchmarks. Taking the

reference from the figure above, it can be identified that each benchmarkbenchmarks

filefiles hashave a different number of branch executed instructions. Each

benchmarkbenchmarks filefiles providesprovide a different rate for branch address hits

as well as for the branch misprediction rate. To determine the accuracy rate as well as

the misprediction rate of branch instructions, simulations were carried out on a modified

version of SimpleScalarSimple Scalar 3.0 simulator.

Fig. 4: Performance impact of each benchmark files: total number of branch executed

instructions, branch address hit, and branch misprediction rate.

5.2 Performance impact of branch prediction accuracy

The impact of the branch prediction accuracy rate is identified when a predicted

direction of a branch is equal to the actual direction of that branch.

14

branch_predicti

on

Table 4 indicates the branch prediction address hit rate accuracy for each benchmarks

file.

This table provides a comparison of the static scheme namely, the always-taken

prediction scheme and always not-taken prediction scheme with a bi-modal dynamic

branch prediction scheme. Evidently, it refers tothat the accuracy rate of address hit

inhit is higher in the bi-modal dynamic branch prediction scheme.

The current paperwork implements a bi-modal dynamic branch prediction scheme by

analyzing the same benchmarks file and the result of the branch accuracy rates are better

than the previous schemes.

Table 4: Comparison of branch prediction address hit rate

Branch

Prediction

schemes

SPEC-alpha Benchmarks Files Tota

l

Acc

urac

y

Anagra

m

args Dirent llo

ng

Lsl

wr

Always-

taken

prediction

scheme

75.75% 70.08

%

75.31

%

62.

66

%

63.4

0%

69.4

4%

Always not-

taken

prediction

scheme

6.40% 63.55

%

59.14

%

61.

29

%

62.3

3%

62.5

4%

Bi-modal

prediction

scheme

78.50% 82.41

%

78.84

%

85.

50

%

78.4

7%

80.7

4%

Formatted: Indent: Left: 0 cm

Formatted: Font color: Auto

branch_predicti

on

Fig.5: Performance accuracy of branch address accuracy rate of different schemes of

the prediction scheme.

As evident in fig.5. the bi-modal prediction scheme shows higher accuracy as compared

to the other schemes. As a matter of fact, the accuracy rate is different in each

benchmark file in the corresponding scheme. The average accuracy rate of bi-modal

prediction is 11.30% higher than always taken prediction scheme, and 18.20 % higher

than always not-taken prediction scheme.

 5.2 Performance impact of branch misprediction rate:

The impact of branch misprediction rate is observed when a predicted direction of a

branch is not equal to the actual direction of that branch.

Table 5 reflects the branch misprediction rate for each benchmarks file. This table

suggests the comparison of the static schemes such as always-taken prediction scheme

and always not-taken prediction scheme with bi-modal dynamic branch prediction

scheme. Visibly, it shows that the misprediction rate is lowest in the bi-modal dynamic

branch prediction scheme. The results of always taken prediction schemes and always

not-taken prediction schemes were implemented in our previous work. In this paper, we

implemented the bi-modal dynamic branch prediction scheme by using the same

benchmarks file and the result of the branch misprediction rate is better than the

previous schemes.

Fig. 5 reflects that the bi-modal prediction scheme provides the lowest misprediction

rate when compared to the other schemes. Furthermore, the misprediction rate is

16

branch_predicti

on

different in each benchmark file in every scheme. The average misprediction rate of bi-

modal prediction is 11.30% lower than always taken prediction scheme, and 18.18 %

lower than always not-taken prediction scheme.

6. Conclusion and Future Scope

In the current constructed paper, a bi-modal dynamic branch prediction scheme is

implemented that has a lower misprediction rate and higher accuracy rate than the static

prediction schemes. Leveraging the benchmarks files, the accuracy rate of bi-modal

prediction is 11.30% higher than always taken prediction scheme, and 18.20 % higher

than always not-taken prediction scheme.

On the other hand, the misprediction rate is 11.30% lower than always taken prediction

schemesscheme, and 18.18 % than always not-taken prediction schemesscheme. These

results satisfactory suggest that the dynamic branch prediction scheme provides

improved results than static branch prediction schemes.

The branch prediction accuracy can be optimized by combining static with dynamic

branch prediction. Some of the branches can be predicted with a static bias bit, while

the others having less biased behavior can use the dynamic predictor. Machine learning

also mechanizes a genetic algorithm or neural network to improve the accuracy rate of

the branch predictor.

References

[1] Shen, J. P., & Lipasti, M. H. (2013). Modern processor design: fundamentals of

superscalar processors. Waveland Press.

[2] Smith, J. E. (1998, August). A study of branch prediction strategies. In 25 years

of the international symposia on Computer architecture (selected papers) (pp.

202-215).

[3] Le, H. Q., Van Norstrand, J. A., Thompto, B. W., Moreira, J. E., Nguyen, D. Q.,

Hrusecky, D.,& Kroener, M. (2018). IBM POWER9 processor core. IBM

Journal of Research and Development, 62(4/5), 2-1.

[4] Pandey, A. (2016, August). Study of data hazard and control hazard resolution

techniques in a simulated five stage pipelined RISC processor. In 2016

International Conference on Inventive Computation Technologies (ICICT) (Vol.

2, pp. 1-4). IEEE.

branch_predicti

on

[5] Y. He, H. Wan, B. Jiang, and X. Gao, “A new method to prevent control hazard

in pipeline processor by using an auxiliary processing unit,” MATEC Web Conf.,

vol. 139, p. 00085, 2017.

[6] A. Changela, “Hazard Detection and Data Forwarding Scheme for 5-stage

Pipeline Structure of RISC Processor,” Int. J. Innov. Res. Comput. Commun.

Eng., vol. 4, no. 6, pp. 11693–1169, 2016.

[7] Wang, Y., & Chen, L. (2015). Dynamic Branch Prediction Using Machine

Learning. ECS-201A, Fall.

[8] Sweety and P. Chaudhary, "Implemented Static Branch Prediction Schemes for

the Parallelism Processors," 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad,

India, 2019, pp. 79-83.

[9] Youssif, A., Ismail, N., & Torkey, F. (2004, September). Comparison of branch

prediction schemes for superscalar processors iceec 2004. In Electrical,

Electronic and Computer Engineering, 2004. ICEEC’04. 2004 International

Conference on (pp. 257-260).

[10] Lee, J. K., & Smith, A. J. (1984). Branch prediction strategies and branch target

buffer design. Computer, (1), 6-22.

[11] Yeh, T. Y., & Patt, Y. N. (1992). Alternative implementations of two-level

adaptive branch prediction. ACM SIGARCH Computer Architecture News,

20(2), 124-134.

[12] Yeh, T. Y., & Patt, Y. N. (1993, May). A comparison of dynamic branch

predictors that use two levels of branch history. In Proceedings of the 20th

annual international symposium on computer architecture (pp. 257-266).

[13] Pan, S. T., So, K., & Rahmeh, J. T. (1992, September). Improving the accuracy

of dynamic branch prediction using branch correlation. In Proceedings of the

fifth international conference on Architectural support for programming

languages and operating systems (pp. 76-84).

[14] McFarling, S. (1993). Combining branch predictors (Vol. 49). Technical Report

TN-36, Digital Western Research Laboratory.

[15] Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a

quantitative approach. Elsevier.

[16] Su, Z., & Zhou, M. (1995). A comparative analysis of branch prediction

schemes. University of California at Berkeley, Computer Architecture Project.

[17] Rajper, A., Talpur, S., & Rajper, N. J. (2017, April). Analysis of Performance

of Instruction Pipeline with Transactional Slice Mechanism in CMP. In 2017

UKSim-AMSS 19th International Conference on Computer Modelling &

Simulation (UKSim) (pp. 209-214). IEEE.

18

branch_predicti

on

[18] Egan, C., Steven, G., Quick, P., Anguera, R., Steven, F., & Vintan, L. (2003).

Two-level branch prediction using neural networks. Journal of Systems

Architecture, 49(12-15), 557-570.

[19] Steven, G., Anguera, R., Egan, C., Steven, F., & Vintan, L. (2001, September).

Dynamic branch prediction using neural networks. In Proceedings Euromicro

Symposium on Digital Systems Design (pp. 178-185). IEEE.

[20] Cheng, C. C. (2000). The schemes and performances of dynamic branch

predictors. Berkeley Wireless Research Center, Tech. Rep.

[21] González, A. M. (1993). A survey of branch techniques in pipelined processors.

Microprocessing and microprogramming, 36(5), 243-257.

[22] Mittal, S. (2019). A survey of techniques for dynamic branch prediction.

Concurrency and Computation: Practice and Experience, 31(1), e4666.

[23] Chaudhary, P. (2019, February). Implemented Static Branch Prediction Schemes

for the Parallelism Processors. In 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing (COMITCon) (pp. 79-83).

IEEE.

[24] Jin, W., Shi, F., Song, Q., & Zhang, Y. (2013). A novel architecture for ahead

branch prediction. Frontiers of Computer Science, 7(6), 914-923.

[25] Otiv, S., Garikipati, K., Patnaik, M., & Kamakoti, V. (2014, June). H-pattern: A

hybrid pattern based dynamic branch predictor with performance based

adaptation. In Proc. 4th JILP Workshop Comput. Architecture Competitions:

Championship Branch Prediction.

[26] Pan, G., & Lu, M. (2006). Analysis of Branch Predictors.

[27] Jiménez, D. A., & Lin, C. (2001, January). Dynamic branch prediction with

perceptrons. In Proceedings HPCA Seventh International Symposium on High-

Performance Computer Architecture (pp. 197-206). IEEE.

[28] Vintan, L. N., & Iridon, M. (1999, July). Towards a high performance neural

branch predictor. In IJCNN'99. International Joint Conference on Neural

Networks. Proceedings (Cat. No. 99CH36339) (Vol. 2, pp. 868-873). IEEE.

[29] Ribas, V. M., Figueiredo, M. F., & de Lara, R. A. (2003). Simulating a simple

neural network on branch prediction. Acta Scientiarum Technology, 25(2), 153-

160.

[30] Amant, R. S., Jiménez, D. A., & Burger, D. (2008, November). Low-power,

high-performance analog neural branch prediction. In 2008 41st IEEE/ACM

International Symposium on Microarchitecture (pp. 447-458). IEEE.

[31] Sbera, M., VINTAN, L. N., & FLOREA, A. (2014). Static and Dynamic Branch

Prediction Using Neural Networks. no. May.

branch_predicti

on

[32] Arora, H., Kotecha, S., & Samyal, R. (2013, December). Dynamic Branch

Prediction Modeller for RISC Architecture. In 2013 International Conference

on Machine Intelligence and Research Advancement (pp. 397-401). IEEE.

[33] Parasanna, S., Sarma, R., & Balasubramanian, S. (2017). A study on improving

branch prediction accuracy in the context of conditional branches. Int J Eng

Technol Sci Res, 4, 654-662.

[34] Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a

quantitative approach. Elsevier.

